Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
Ι	S1M1	Differential Calculus, Trigonometry and Matrices	6	5	Tamil and English

UNIT I: Successive Differentiation – Leibnitz's Theorem and its Applications- Maxima and Minima of Two Variables.

UNIT II:Curvature – Radius of Curvature in Cartesian and Polar Co-ordinates – Centre of Curvature – Evolute.

UNIT III: Expansion for $\sin n\theta$, $\cos n\theta$, $\tan n\theta$ - Expansion for $\sin^n\theta$ and $\cos^n\theta$ - Expansion of $\sin \theta$, $\cos \theta$ and $\tan \theta$ in powers of θ .

UNIT IV:Hyperbolic functions – Relations between hyperbolic functions and circular trigonometry functions – Inverse hyperbolic functions – Logarithm of complex number.

UNIT V: Matrices: Symmetric, Skew – Symmetric matrices-Hermition and Skew-Hermition matrices – Unitary matrices – Orthogonal matrices –Eigen values and Eigen vectors – Cayley –Hamilton theorem - verification of Cayley-Hamilton theorem.

Text Books

 Calculus (Volume I), S. Narayanan and T. K. ManickavachagomPillay, S. Viswanathan PVT., LTD (2009).
 UNIT I: Chapter 3 (Full) & Chapter 7 (Sec 4)
 UNIT II: Chapter 10 (Sec 2.1 – 2.6)
 Trigonometry, S. Narayanan and T. K. ManickavachagomPillay, S. ViswanathanPVT. LTD.
 UNIT II: Chapter 3 (Full)
 UNIT II: Chapter 4 (Full) & Chapter 5 (Sec 5)
 Algebra (Volume II), T. K. ManickavachagomPillay, T. Natarajan and K.S. Ganapathy, S. Viswanathan PVT. LTD.
 UNIT V: Chapter 2 (Sec 6.1 – 6.3, 9.1, 16, 16.3)

Question Paper Pattern

Maximum Marks: 75

Examination Duration: 3 Hours

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
II	S2M2	Classical Algebra	6	5	Tamil and English

UNIT I:Binomial Theorem (Statement only) Binomial: Application of the Binomial Theorem to the Summation of Series – Approximate Values - Exponential and logarithmic series: Exponential Limit - Exponential Theorem (Statement only) – Summation – Logarithmic series (Statement only) – Modification of the Logarithmic series – Problems using the Different Forms of Logarithmic series.

UNIT II:General summation of series including successive difference and recurring series.

UNIT III: Theory of equations: Imaginary roots occur in pairs – Irrational roots occur in pairs - Relation between the roots and coefficients – Symmetric functions – Sum of the powers of the roots of an equation – Newton's theorem on the sum of the powers of the roots.

UNIT IV:Transformation of equations – Reciprocal roots - Diminishing, increasing, multiplying the roots- Form the quotient and remainder when a polynomial is divided by a polynomial – Removal of terms.

UNIT V:Form an equation whose roots are any powers of the roots of a given equations – Descartes rule of signs – Rolles' theorem.

Text Book

Algebra (Volume I), T. K. ManickavachagomPillay, T. Natarajan and K.S. Ganapathy, S. Viswanathan PVT. LTD, (2004).

UNIT I:Chapter 3 (Sec 10, 14) & Chapter 4 (Sec 1 – 3, 5 - 7) UNIT II:Chapter 5 (Sec 2 - 7) UNITIII: Chapter 6 (Sec 9 - 14) UNIT IV:Chapter 6(Sec 15, 16, 17, 18,19) UNIT V: Chapter 6 (Sec 20, 24, 25)

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
I &II	S2M3	Integral Calculus and Analytical Geometry 3D	3	5	Tamil and English

UNIT I:Definite integrals: Properties – problems - Integration by parts –problems – Reduction formula.

UNIT II:Multiple integrals: Double integrals – Evaluation of double integrals – Change the order of integration – Triple integrals – Beta and Gamma functions – Properties - Integration using Beta and Gamma functions.

UNIT III:Plane: Standard equation of the plane – Intercept form – Normal form – Plane passing through the given points - Angle between the planes – Plane through the line of intersection of two planes.

UNIT IV: Straight line: Equation of a straight line in symmetrical form – Equation of a straight line passing through two given points - Coplanar lines – Equation of the Coplanar lines – Shortest distance between two skew lines – Equation of shortest distance.

UNIT V:Sphere: Standard equation – Length of the tangent from any point – Plane section of a sphere - Sphere passing through a given circle – Intersection of two spheres –Equation of the tangent plane to the sphere.

Text books

1. Calculus (Volume II), S. Narayanan and T. K. ManickavachagomPillay, S. Viswanathan PVT.LTD, (2006).

UNIT I: Chapter 1 (Sec 11 - 13) UNIT II: Chapter 5 (Sec 1, 2.1, 2.2& 4)& Chapter 7 (Sec 2.1 - 2.3, 3, 4& 5)

2. Analytical geometry (Three Dimensions), T. K. ManickavachagomPillay and T. Natarajan, S. ViswanathanPVT. LTD, (2006).

UNITIII:Chapter 2 (Sec 1 - 9) UNITIV:Chapter 3 (Sec 1 - 4, 7& 8) UNITV:Chapter 4 (Sec 1 - 8)

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
III	S3M4	Differential Equations and Laplace Transforms	6	5	Tamil and English

UNIT I:Ordinary Differential equations – Particular integral of second and higher order Differential Equations with constant coefficients – Linear equations with variable coefficients.

UNIT II:Exact differential equations – Firstorder and higher degree equations –Variation of parameters.

UNIT III:Partial Differential Equations: Formations ofPartial Differential Equations – General, Particular and Singular integral -Four standard types – Lagrange's equation – Charpit's equation (simple problems).

UNIT IV:Partial Differential Equations of the second order homogeneous equations with constant coefficient – particular integral f(D, D')z = f(x, y), where f(x, y) is of the form e^{ax+by} , $\sin(ax + by)$, $\cos(ax + by)$, F(x, y) and $F(x, y)e^{ax+by}$.

UNIT V:Laplace Transforms: Properties – Problems - Inverse Laplace Transforms- Problems –Solution of Ordinary Differential Equations using Laplace Transforms.

Text Books

 Calculus (Volume III), S. Narayanan and T. K. ManickavachagomPillay, S. Viswanathan PVT. LTD, (2004).
 UNIT I: Chapter 2 (Sec 1 – 4& 8)
 UNIT II: Chapter 1 (Sec 3- 5) & Chapter 2 (Sec 10)
 UNIT III: Chapter 4 (Sec 1- 3, 5 - 7)
 UNIT V: Chapter 5 (Sec1,2,4 - 9)

2. Engineering Mathematics – III, M.K.Venkatraman, The National Publishing Company, Chennai.
UNIT IV: Chapter -2 (Sec 13 - 19)

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
IV	S4M5	Numerical Analysis	6	5	Tamil and English

UNIT I:Solutions of algebraic and transcendental equation: Bisection Method - Iteration Method -Method of False position - Newton -Raphson Method.

UNIT II:Finite differences: Forward differences, Backward differences - Central differences - symbolic relations - Newton's formula for interpolation - Central Difference Interpolation formula – Gauss's, Stirling's and Bessel's Formulae - Interpolation with unevenly spaced points - Lagrange's Interpolation formula.

UNIT III: Numerical differentiation: Computing first and second derivatives - Numerical integration: Trapezoidal rule and Simpson's 1/3 and 3/8 rules.

UNIT IV: Solution of linear systems: Gaussian elimination Method - Gaussian Jordan Method - Iterative methods: Guass Jacobi and Gauss Seidal Methods. Numerical solutions of Ordinary differential equations:Taylor's series method – Picardsmethod of successive approximations – Euler's method- Modified Euler's method.

UNIT V:Numerical solution of ordinary differential equations: Runge- Kutta method of second, third and fourth order – Predictor - Corrector Methods - Adams- Moulton method and Milne's method.

Text Book

Introductory Methods of Numerical Analysis, S.S. Sastry, Prentice Hall of India Pvt. Ltd, New Delhi, Third Edition (2003).

UNIT I:Chapter 2 (Sec 2.2 - 2.5) UNITII:Chapter 3 (Sec 3.3, 3.6, 3.7(3.7.1- 3.7.3), 3.9.1) UNIT III:Chapter 5 (Sec 5.2, 5.4(5.4.1 - 5.4.3)) UNIT IV:Chapter 6 (Sec 6.3.2, 6.4) & Chapter 7 (Sec 7.2- 7.4) UNIT V:Chapter 7 (Sec 7.5&7.6)

Reference

P. Kandasamy, K. Thilagavathy and K. Gunavathy, Numerical Methods, S.Chand& Company Ltd, New Delhi.

Question Paper Pattern

Maximum Marks: 75Examination Duration: 3 HoursPart A: $10 \times 2 = 20$ (Two questions from each unit)Part B: $5 \times 5 = 25$ (Either/Or type – One question from each unit)Part C: $3 \times 10 = 30$ (Three out of Five – One question from each unit)

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
III & IV	S4M6	Vector Analysis and Fourier Series	3	5	Tamil and English

UNIT I:Vector differentiation: Velocity and acceleration- Vector and scalar fields –Gradient of a vector- Directional derivative – divergence and curl of a vector – solenoidalandirrotational vectors –Laplacian operator –simple problems.

UNIT II:Vector integration: Tangential line integral –Conservative force field –scalar potential- Work done by force - Surface integral- Volume integral – simple problems.

UNIT III:Gauss Divergence Theorem – Stoke's Theorem – Green's Theorem – Simple problems and Verification of the theorems.

UNIT IV:Fourier series: Definition - Fourier series expansion of periodic functions with period 2π -Use of Odd andEven functions in Fourier Series.

UNIT V:Half range Fourier Cosine Series – Definition and problems – Halfrange Fourier Sine series – Definition and problems – Changeof interval.

Text Books

Vector Algebra and Analysis, S. Narayanan and T. K. ManickavachagomPillay,
 S. Viswanathan PVT. LTD.
 UNITI: Chapter 4 (Sec 1, 2, 6 – 11)
 UNIT II: Chapter 6 (Sec 1 - 5)
 UNITIII: Chapter 6 (Sec 6 - 10)

2. Calculus (Volume III), S. Narayanan and T. K. ManickavachagomPillay, S. Viswanathan PVT. LTD, (2004).
UNITIV:Chapter 6 (Sec 1 - 3)
UNITV:Chapter 6 (Sec 4 - 6)

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
V	S5M7	Abstract Algebra	5	5	Tamil and English

UNIT I: Group Theory: Subgroup – A Counting Principle – Normal subgroups and Quotient groups.

UNIT II: Group Theory: Homomorphisms – Automorphisms.

UNIT III: Group Theory: Caley's Theorem – Permutation groups.

UNIT IV: Ring Theory: Definition and Examples of Rings – Some Special Classes of Rings – Homomorphisms – Ideal and Quotient Rings – More Ideal and Quotient Rings – The Field of Quotients of an Integral Domain.

UNIT V: Vector Spaces: Elementary Basic Concepts – Linear Independence and Bases – Dual Spaces – Inner Product Spaces.

Text Book

Topics in Algebra, I. N. Herstein, John Wiley & Sons, 2^{nd} Edition. UNIT I: Chapter 2 (Sec 2.4 – 2.6) UNIT II: Chapter 2 (Sec 2.7 – 2.8) UNIT III: Chapter 2 (Sec 2.9 – 2.10) UNIT IV: Chapter 3 (Sec 3.1 – 3.6) UNIT V: Chapter 4 (Sec 4.1 – 4.4)

Reference

Algebra, S.Lang, 3rd Edition, Springer (India), 2004.

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Part A: $10 \times 2 = 20$ (Two questions from each unit)

Part B: $5 \times 5 = 25$ (Either/Or type – One question from each unit)

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
V	S5M8	Real Analysis	5	4	Tamil and English

UNIT I: Equivalence:Countability – Definition of sequence and subsequence – Limit of a sequence – Convergent sequences – Divergent sequences – Bounded sequences – Monotone Sequences – Operations on convergent sequences – Cauchy sequences.

UNIT II: Convergence and Divergence: Series with nonnegative terms – Alternating series – Conditional convergence and absolute convergence – Tests for absolute convergence.

UNIT III: Limit of a function on the real line – Metric spaces – Limits in metric spaces – Functions continuous at a point on the real line – Functions continuous on a metric space – Open set – Closed set.

UNIT IV: Sets of measure zero – Definition of the Riemann integral – Existence of the Riemann integral – Properties of the Riemann integral.

UNIT V: Derivatives – Rolles' Theorem – The laws of mean – Fundamental theorems of calculus – Taylor's theorem.

Text Book

Methods of Real Analysis, Richard R. Goldberg, Oxford & IBH Publishing Co. PVT. LTD, New Delhi. UNIT I: Chapter 1 (Sec 1.5, 1.7) & Chapter 2 (Sec 2.1 - 2.7 & 2.10) UNIT II:Chapter 3 (Sec 3.1 – 3.4 & 3.6)

UNIT III: Chapter 4 (Sec 4.1 - 4.3) & Chapter 5 (Sec 5.1 & 5.3 - 5.5) UNIT IV:Chapter 7 (Sec 7.1 - 7.4) UNITV: Chapter 7 (Sec 7.5 - 7.8) & Chapter 8 (Sec 8.5)

Reference

Mathematical Analysis, Tom Apostol, Addison – Wesley Publishing company, London, 1971

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
V	S5M9	Statics	5	4	Tamil and English

UNIT I:Forces Actingat a Point: Parallelogram Law, Triangle Law – Polygon of Forces – Lami's Theorem – Resolution of a Force.

UNIT II:Parallel Forces and Moments: Parallel Forces – Unlike Parallel Forces – Moments– Couple.

UNIT III:Equation of Three Forces Acting on a Rigid Body – Necessary and Sufficient conditions (Equation only)–Coplanar Forces – Equation to the Line of Action of the Resultant.

UNIT IV:Friction – Laws of Friction – Equation of a Particle on an Inclined Plane– Problems on Friction.

UNIT V:Equilibrium of Strings: Catenary – Geometrical Properties – Simple Problems – SuspensionBridge.

Text Book

Statics, M. K. Venkataraman, Agasthiyar Publications, 2002

UNIT I:Chapter 2 (Sec 2.1-2.12, 2.15) Unit II:Chapter3 (Sec3.1 -3.13)& Chapter 4 (Sec 4.1 – 4.10) Unit III:Chapter5 (Sec 5.1 – 5.6) & Chapter 6 (Sec 6.1 – 6.3, 6.6 - 6.10) Unit IV:Chapter7 (Sec 7.1 - 7.8, 7.10 - 7.12) Unit V:Chapter 11 (Sec 11.1- 11.6, 11.9)

Reference

Mechanics (Vector Treatment), P. Duraipandiyan, S. Chand & Co., June 1997 Edition.

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
V	S5MEL1A	Fundamentals of Programming in C	4	4	Tamil and English

UNIT I: Introduction – Basic structure of C programming – Executing a C program – Character – C tokens – Key words and of variables – Assigning value to variables – Symbolic constants – All operators .(Related simple programs)

UNIT II: Arithmetic expression – Evaluation of expression – Precedence of arithmetic operators – some computational problems – Type conversion in expression – Mathematical function – Reading a character – Writing a character – Formatted input – Formatted output – Declaring and initializing string variable – Reading string from terminal – writing string to screen – comparison of two strings – string handling functions.(Related simple programs)

UNIT III: Decision making with IF statement – simple IF statement – IF...ELSE LADDER – Switch statement – The? : Operator – GOTO statement – While statement – Do statement – FOR Statement.

UNIT IV: Arrays: One dimensional arrays – Two dimensional arrays – Initializing two dimensional arrays – Multi dimensional arrays– User defined function: Need for user defined functions –A multi function program – The form of C function – Return values and their types calling functions – first three category of functions – Recursion.

UNIT V: Structure: Structure definition – Giving value to members structure initialization – comparison of structure variables – Arrays of structures – Arrays within structure – Structure within structure – File management: Introduction – Defining and opening of file – Closing a file – Input /Output operation on files.

Text Book

Programming in ANSI C, E. Balagurusamy, Tata McGraw – Hill publishing company Ltd, New Delhi, Second Edition. UNIT I: Chapter I (Sec 1.2, 1.4-1.6), Chapter II (Sec 2.2 - 2.10) & Chapter III (Sec 3.2 - 3.6)

UNITII: Chapter III (Sec 3.10-3.16), Chapter IV (Sec 4.2- 4.5) & Chapter V(Sec 8.2, 8.4, 8.7, 8.8)

UNITIII:Chapter V (Sec 5.2 - 5.9) & Chapter VI (Sec 6.2 - 6.4)

UNITIV:Chapter VII (Sec 7.2 - 7.5) & Chapter IX (Sec 9.2 - 9.10, 9.13)

UNIT V:Chapter X (Sec 10.2 - 10.8) & Chapter XII (Sec 12.1 - 12.4)

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
V	S5MEL1B	Mathematical Modeling	4	4	Tamil and English

UNIT I: Mathematical modeling through ordinary differential equations of first order – Linear growth and Decay models – Non-linear growth and Decay models – Compartment models – Dynamics problems – Geometrical problems.

UNIT II: Mathematical modeling through systems of ordinary differential equations of first order – Population dynamics – Epidemic – Compartment models – Economics – Medicine, arms rays, battles and international trade - Dynamics.

UNIT III: Mathematical modeling through ordinary differential equations of second order: Planetary motions – Circular motions and motion of satellites – Mathematical modeling through linear differential equations of second order –Miscellaneous mathematical models.

UNIT IV: Mathematical modeling through difference equations: Simple models – Basic theory of linear difference equations with constant co-efficient – Economics and finance – Population dynamics and genetics – Probability theory.

UNIT V: Mathematical modeling through graphs: solutions that can be modeled through graphs – Mathematical modeling in terms of directed graphs, Signed graphs, Weighted digraphs and Unoriented graphs.

TextBook :

1. J.N. Kapoor, Mathematical Modeling, Wiley Eastern Limited, New Delhi, 1988

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
V	S5MEL1C	Formal Languagesand Automata Theory	4	4	Tamil and English

UNIT I:Finite Automata - Deterministic Finite Automata - Nondeterministic Finite Automata - Application.

UNIT II:Regular Expressions - Finite Automata and Regular Expressions - Applications of Regular Expressions - Algebraic Laws for Regular Expressions.

UNIT III:Pumping lemma for regular sets – Closure properties of regular sets – Decision algorithms for regular sets – Equivalence and Minimization of Automata.

UNIT IV: Context-free grammars – Parse trees – Applications of Context-free grammars – Ambiguity in grammars and languages.

UNIT V: Pushdown Automata – Languages of a PDA – Equivalence of PDA's and CFG's – Deterministic PDA.

Text Book

John E. Hopcroft and Jeffrey D. Ullman, Introduction to Automata Theory, Languages and Computation, Narosa Publishing House, New Delhi, (1995).

UNIT I:Chapter 2 (Sec 2.1 - 2.4) UNITII:Chapter 3 (Sec 3.1 - 3.4) UNITIII:Chapter 4(Sec 4.1 - 4.4) UNITIV:Chapter 5 (Sec 5.1 - 5.4) UNIT V:Chapter 6(Sec 6.1 - 6.4)

References

1. Rani Siromoney, Formal Languages and Automata, The Christian Literature Society, Madras (1984).

2. Bernard Kolman, Robert C. Busby and Sharon Cutler Ross, Discrete Mathematical Structures, Prentice-Hall of India Learning Private Ltd, New Delhi, Sixth Edition, (2009).

3. Kamala Krithivasan, Introduction to Formal Languages, Automata Theory and Computation, Dorling Kindersley (India) Pvt. Ltd. (2011).

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
V	S5MEL2A	Mathematics for Competitive Examinations	4	4	Tamil and English

UNIT I:Simplification – Square Roots & Cube Roots – Average –ProblemsonNumbers and ages.

UNIT II: Percentage – Profitand loss –Ratio and Proportion – Chain rule.

UNIT III: Time and work - Time and Distance - Problems on Trains - Boats and Streams.

UNIT IV: Simple Interest – Compound Interest – Logarithms.

UNIT V: Area, Volume & Surface Areas, Calendar.

Text Book

R.S. Aggarwal, Quantitative Aptitude, S. Chand & Company Ltd, 7TH Fully Revised Edition(2008).

Unit I:Chapters: 4 – 8 UnitII: Chapters: 10-12 & 14 Unit III: Chapters: 15, 17-19 UnitIV: Chapters: 21-23 UnitV: Chapters: 24, 25 & 27

References:

Maximum Marks: 75

 R.S. Aggarwal, Arithmetic (Subjective and Objective) for Competitive Examinations, S. Chand and Company Ltd (2004).

2. R.S. Aggarwal, Objective Arithmetic, S. Chand & Company Ltd (2004).

Question Paper Pattern

Examination Duration : 3 Hours

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
V	S5MEL2B	Discrete Mathematics	4	4	Tamil and English

UNIT I:MathematicalLogic: Introduction – Statements and Notations – Connectives – Logical capabilities of programming languages – Conditional and Bi-conditional – well-formed formulae – Tautology and Equivalence formulae.

UNIT II:Tautology and Normal Forms: Duality Law – Tautological Implications – Formulae with distinct truth tables – Functionally complete sets of connectives – Other connectives – Normal forms – Disjunctive and Conjunctive Normal forms.

UNIT III:Theory of Inference for Statement Calculus: Introduction – Validity using truth tables – Rules of Inference – Consistency of premises – Indirect method of proof – Automatic theorem proving – Predicates – The statement Function - Variables and quantifiers .

UNIT IV:Predicate Formulae: Predicate formulae – Free and Bound variables – Universe of Discourse – Inference Theory of the predicate calculus – Valid formulas and Equivalences – Some valid formulas over finite Universes – Special valid formulas Involving quantifiers – Theory of inference for the predicate calculus –Formulas Involving more than one quantifier.

UNIT V:Functions and Recursion: Definition and Introduction – Composition of functions – Inverse functions – Recursive functions - sets and predicates.

Text Book

J.P.Tremblay, R.Manohar, Discrete Mathematical Structures with Applications to Computer Science.
Unit I: Chapter 1 (Sec 1.1, 1.2 (1.2.1-1.2.9))
Unit II: Chapter 1 (Sec 1.2 (1.2.10-1.2.14), 1.3 (1.3.1-1.3.5))
Unit III: Chapter 1 (Sec 1.4 (1.4.1-1.4.4), 1.5 (1.5.1 & 1.5.2))
Unit IV: Chapter 1 (Sec 1.5 (1.5.3-1.5.5), 1.6)

Unit V: Chapter 2 (Sec 2.4 (2.4.1-2.4.3), 2.6.1)

Reference

Maximum Marks: 75

C.L.Liu, Elements of Discrete Mathematics, Tata McGraw-Hill Publishing company Limited, New Delhi, Second Edition.

Question Paper Pattern

Examination Duration : 3 Hours

Part A: $10 \times 2 = 20$ (Two questions from each unit)

Part B: $5 \times 5 = 25$ (Either/Or type – One question from each unit)

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
V	S5MEL2C	Fuzzy Sets and FuzzyLogic	4	4	Tamil and English

UNIT I:Crisp Sets and Fuzzy Sets:Introduction-Crisp sets: An over view- Fuzzy Sets: Basic Types - Basic concepts of Fuzzy sets – Additional Properties of α -cuts –Representations of Fuzzy Sets.

UNIT II:Operationson Fuzzy Sets:Types of operations – Fuzzy Compliments –Fuzzy Intersections: t-norms – Fuzzy Unions: t-conorms – Combinations of Operations – Aggregation Operations.

UNIT III:FuzzyArithmetic:Fuzzy Numbers – Linguistic Variables - Arithmetic Operations on Intervals – Arithmetic Operations on Fuzzy Numbers – Lattice of Fuzzy Numbers – Fuzzy Equations.

UNIT IV: Fuzzy Relations: Crisp and Fuzzy relations – Projection and Cylindric Extensions – Binary Fuzzy Relations – Binary Relations on a single set – Fuzzy Equivalence Relations – Fuzzy Compatibility Relations-Orderings – Morphism.

UNITV: Fuzzy Relational Equations:General Discussion – Problem Partitioning - Solution Methods – Fuzzy Relation Equations Based on: Sup–i Compositions – $Inf-\omega_i$ Compositions.

Text Book

1. George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic-Theory and Applications, Prentice-Hall of India Private Limited (2012).

UNIT I: Chapter 1 (Sec. 1.1-1.4)& Chapter 2 (Sec. 2.1 & 2.2)

UNIT II: Chapter3 (Sec. 3.1-3.6)

UNIT III: Chapter4 (Sec. 4.1-4.6)

UNIT IV: Chapter 5 (Sec. 5.1-5.8)

UNIT V: Chapter6 (Sec. 6.1-6.5)

Reference

George J. Klirand Tina A. Folger, Fuzzy Sets, Uncertainty and Information, Prentice-Hall of India Private Limited-Fourth printing-June 1995.

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
VI	S6M10	Complex Analysis	5	5	Tamil and English

UNIT I : Analytic Functions: Functions of a Complex variable – Limits – Theorems on limit – Continuous Functions – Differentiability – The Cauchy-Riemann Equations – Analytic Functions-Harmonic Functions.

UNIT II: Bilinear Transformations: Elementary Transformations –Bilinear Transformations-Cross Ratio – Fixedpoints of Bilinear Transformations –Some Special Bilinear Transformations.

UNIT III:Complex Integration: Definite integral - Cauchy's Theorem - Cauchy's Integral Formula - Higher Derivatives.

UNIT IV:Series Expansions: Taylor's Series – Laurent's Series – Zeros of an Analytic Function.

UNIT V: Calculus of Residues: Singularities – Residues- Cauchy's Residues Theorem – Problems.

Text Book

Maximum Marks: 75

S.Arumugam, A.Thangapandi Isaac and A.Somasundaram, Complex Analysis, Scitech Publication, Chennai. UNIT I:Chapter2 (Sec 2.1 - 2.8) UNIT II:Chapter3 (Sec 3.1 - 3.5) UNIT III:Chapter 6 (Sec 6.1 - 6.4) UNIT IV:Chapter7 (Sec7.1 - 7.3)

UNIT V:Chapters7 and 8 (Sec7.4, 8.1&8.2)

Question Paper Pattern

Examination Duration : 3 Hours

Part A: $10 \times 2 = 20$ (Two questions from each unit) Part B: $5 \times 5 = 25$ (Either/Or type – One question from each unit)

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
VI	S6M11	Operations Research	5	5	Tamil and English

UNIT I: Mathematical Formulation of linear programming problems - Graphical method – simplex method – Big - M method – Two phase simplex method.

UNIT II: Transportation Problems: Introduction –Finding initial Basic feasible solution (North West Corner Rule, Least Cost Method, Vogel's Approximation Method) – optimal solution (Modified Distribution Method) – Degeneracy in Transportation Problems – Assignment Problems: Introduction –HungrainAlgorithm – problems - Travelling salesman problem.

UNIT III: Network Scheduling by PERT/CPM:CPM: Introduction – Network and Basic components – Rules of Network construction – Time calculations in network – Critical Path Method –PERT calculations.

UNIT IV: Sequencing Problems:Introduction – problems with n jobs and 2 machines – problems with 2 jobs and n machines.

UNIT V: Replacement Problems:Introduction – Replacement of Equipment – Deteriorates gradually – Replacement of Equipment that fails suddenly.

Text Book

Operations Research, Kantiswarup, P.K. Gupta, Man Mohan Sultan Chand &SonsEducational Publishers New Delhi (2007).

UNIT I:Chapter 2 (Sec 2.1 - 2.4) &Chapter 3(Sec 3.1&3.2)& Chapter 4 (Sec 4.3& 4.4) UNITII:Chapter: 10(Sec 10.1, 10.2, 10.8 -10.10, 10.12& 10.13) & Chapter 11 (Sect 11.1 - 11.3& 11.7)

UNITIII:Chapter 12 (Sec 12.1 - 12.6) UNITIV:Chapter 12 (Sec 12.1 - 12.6) UNIT V:Chapter 18 (Sec 18.1 - 18.3)

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
VI	S6M12	Dynamics	5	5	Tamil and English

UNIT I: Kinematics: Velocity – Acceleration –Relative Velocity – Angular velocity – Motion in a straight line under uniform acceleration.

UNIT II:CentralOrbit:Radial and transverse components of velocity and acceleration – Central force – Differential equation to a central orbit in polarco-ordinates –Pedal equations – Given the central orbit - Law of force – Related problems .

UNIT III: Simple Harmonic motion: Amplitude and periodic time – Composition of two simple harmonic motions - Load suspended by an elastic string.

UNIT IV: Projectile: Path of a projectile – Greatest height – range –time of flight – Range on an inclined plane – Maximum range.

UNIT V:Collision of elastic bodies: Impact of a sphere on a plane – Direct and Oblique Impact of two smooth spheres – Loss of Kinetic energy.

Text Book

Dynamics, M. K. Venkataraman, Agasthiyar Book Depot, 1990

UNIT I:Chapter 3 (Sec 3.3, 3.9 – 3.15, 3.17, 3.22) UNITII:Chapter 11 (Sec 11.2, 11.5 – 11.9, 11.11 – 11.13) UNITIII:Chapter 10 (Sec 10.1 – 10.9) UNITIV:Chapter 6 (Sec6.1 – 6.10, 6.12) UNIT V:Chapter 8 (Sec 8.1 – 8.8)

References

1. Mechanics (Vector Treatment), P. Duraipandiyan, S. Chand & Co., June 1997 Edition.

2. Dynamics, A. V. Dharmapadham, S. Viswanathan Publishers, 1981

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Part A: $10 \times 2 = 20$ (Two questions from each unit)

Part B: $5 \times 5 = 25$ (Either/Or type – One question from each unit)

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
VI	S6M13	Analytic Number Theory	5	4	Tamil and English

UNIT I: The Fundamental Theorem of Arithmetic: Introduction – Divisibility – Greatest common divisor – Prime numbers – The Euclidean algorithm – The greatest common divisor of more than two numbers.

UNIT II: Arithmetical Functions and Dirichlet Multiplication: Introduction – The Mobius function $\mu(n)$ – The Euler totient function $\phi(n)$ – Multiplicative functions.

UNIT III: Congruencies: Definition and basic Properties of Congruencies – Residue classes and complete residue systems – Linear congruencies – Reduced residue systems and the Euler – Fermat Theorem – Polynomial congruencies modulo p - Lagrange's theorem – Applications of Lagrange's theorem – Simultaneous Linear Congruences - The Chinese remainder theorem.

UNIT IV: Quadratic Residues and the Quadratic Reciprocity Law: Quadratic residues – Legendre's symbol and its properties – Evaluation of (-1/P) and (2/P) – Gauss lemma – The quadratic reciprocity law – Applications of the reciprocity law.

UNIT V: Diophantine Equations: The Jacobi symbol – Applications to Diophantine equations – Gauss sums and the quadratic reciprocity law.

Text Book

Tom M. Apostol, Introduction to Analytic Number Theory, Narosa Publishing House.

UNIT I: Chapter I (Sec 1.1 - 1.5, 1.7 &1.8) UNIT II: Chapter II(Sec 2.1 - 2.5& 2.9) UNIT III: Chapter V (Sec5.1 - 5.7) UNIT IV: Chapter IX (Sec 9.1 - 9.6) UNIT V: Chapter IX(Sec 9.7 - 9.9)

Reference

A Course in Number Theory and Cryptography, Neal Koblitz, Springer, Second Edition.

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
VI	S6MEL3A	Graph Theory	4	4	Tamil and English

UNIT I:Graphs and Subgraphs: Introduction - The Konigsberg Bridge problem – Definitions and Examples – Degrees – Subgraphs – Isomorphism.

UNITII:Independent sets and coverings – Intersection Graphs and line graphs – matrix representation of graphs – Operations on graphs – Degree sequences – Graphic sequences.

UNIT III:Connectedness: Introduction – Walks,Trails and Paths – Connectedness and Components – Blocks- Connectivity.

UNIT IV:Eulerian, Hamiltonian Graphs and Trees: Introduction – Eulerian graphs – Hamiltonian graphs – Characterization of Trees.

UNIT V: Planarity: Introduction – Definition and Properties- Characterization of planar graphs.

Text Book

Invitation to Graph theory, S.Arumugam and S.Ramachandran, ScitechPublications(India)Pvt.Ltd.

UNIT I: Chapter 1 (Sec 1.0, 1.1) &Chapter 2 (Sec 2.0 - 2.4) UNIT II: Chapter 2 (Sec 2.6-2.9)&Chapter 3 (Sec 3.1 - 3.2) UNIT III: Chapter 4 (Sec 4.0 - 4.4) UNIT IV: Chapter 5 (Sec 5.0 - 5.2) & Chapter 6 (Sec 6.0 - 6.1) UNIT V: Chapter 8 (Sec 8.0 - 8.1)

Reference

Graph Theory, NarsinghDeo, PHI Pvt. Ltd., New Delhi (2002).

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
VI	S6MEL3B	Astronomy	4	4	Tamil and English

UNIT I :Celestial sphere and diurnal motion – Celestial coordinates – Sidereal time.

UNIT II: Morning and evening stars – Circumpolar stars - Zones of earth - Perpetual day - Twilight.

UNIT III: Refraction – Laws of refraction – Tangent formula - Horizontal refraction - Geocentric parallax – Horizontal parallax.

UNIT IV:Kepler's laws - Anomalies – Kepler's equation - Calendar.

UNIT V: Moon - Sidereal and synodic months – Elongation – Phase of moon – Eclipses - Umbra and penumbra – Lunar and solar eclipses – Maximum and minimum number of eclipses in a year.

Text Book

S. Kumaravel and SusheelaKumaravel, Astronomy, Prentice-Hall (2000).

UNIT I: Chapter II(Sec39 – 76) UNIT II: Chapter III (Sec 80 – 83, 87 – 89, 111 – 116) UNIT III: Chapter IV (Sec 117 – 128), Chapter V (Sec 135 – 144) UNIT IV: Chapter VI (Sec 146 – 149, 156 – 159), Chapter VII (Sec 175 – 179) UNIT V: Chapter XII (Sec 229 – 241), Chapter XIII (Sec 256 – 263, 267, 268, 271 – 275)

References

Maximum Marks: 75

1. W.M. Smart, Textbook on Spherical Astronomy, Cambridge University Press (1999).

2. Barlow, Elementary Mathematical Astronomy, Barlow Prentice-Hall (1983).

Question Paper Pattern

Examination Duration : 3 Hours

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
VI	S6MEL3C	Coding Theory	4	4	Tamil and English

UNIT I:Error detection, correction and decoding: Communication channels – Maximum Likelihood decoding.

UNIT II:Hamming distance – Nearest neighbour / minimum distance decoding – Distance of a code.

UNIT III: Finite Fields: Finite fields – Polynomial rings – Structure of finite fields - Minimal Polynomials.

UNIT IV: Linear codes: Vector spaces over finite fields - Linear Codes - Hamming weight – Bases for linear codes.

UNIT V: Generator matrix and parity - Check matrix – Equivalence of linear codes – Encoding with a linear code – Decoding of linear codes – Cosets – Nearest neighbour decoding for linear codes – Syndrome decoding.

Text Book

San Ling and Chaoping Xing, Coding Theory: A first course, Cambridge University Press (2004).

UNIT I: Chapter 2 (Sec 2.1 - 2.2) UNIT II: Chapter 2 (Sec 2.3 - 2.5) UNIT III: Chapter 3 UNIT IV: Chapter 4 (Sec 4.1 - 4.4) UNIT V: Chapter 4 (Sec 4.5 - 4.8)

References

1. D.G. Hoffman et al, Coding Theory and Cryptography – The Essentials, Marcel Dekker INC., Second Edition, (2000).

2. J.H. Van Lint, Introduction to Coding Theory, Springer, (1998).

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
V	S5MELO1	Graph Theory (Non-Major Elective for Physics Major)	4	3	Tamil and English

UNIT I: Graphs and Sub-graphs: Introduction-The Konigsberg Bridge problems – Definitions and Examples – Degrees – subgraphs– Isomorphism.

UNITII:IndependentSets,Coveringsand Degree Sequences: Independent sets and coverings-Intersection Graphs and Line Graphs - Matrices – Operations on graphs – Degree sequences – Graphic sequences.

UNIT III:Connectedness: Introduction – Walks,trails and paths – Connectedness and components – Blocks - Connectivity.

UNIT IV:Eulerian, Hamiltonian Graphs and Trees: Introduction – Eulerian graphs – Hamiltonian graphs.

UNIT V:Planarity: Introduction – Definition and properties - Characterization of planar graphs – Thickness, Crossing and Outer Planarity.

Text Book

Invitation to Graph theory, S.Arumugam, S.Ramachandran, ScitechPublications(India)Pvt.Ltd

UNIT I:Chapter 1& 2 (Sec1.0 - 2.4) UNITII:Chapter 2& 3 (Sec 2.7- 2.9, 3.1 & 3.2) UNITIII:Chapter 4(Sec4.0 - 4.4) UNITIV:Chapter 5(Sec 5.0 - 5.2,) UNIT V:Chapter 8(Sec 8.0- 8.3)

Reference

Graph Theory, NarsinghDeo, PHI Pvt. Ltd., New Delhi (2002).

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Part A: $10 \times 2 = 20$ (Two questions from each unit)

Part B: $5 \times 5 = 25$ (Either/Or type – One question from each unit)

Semester	Subject Code	Title of the Paper	Hours / Week	No. of Credits	Medium of Instruction
VI	S6MELO2	Mathematics for Chemists (Non-Major Elective for Chemistry Major)	4	3	Tamil and English

UNIT I: Transportation Problems:Introduction –Finding initial Basic feasible solution North West Corner Rule, Least Cost Method, Vogel's Approximation Method – simple problems.

UNIT II: Assignment Problems:Introduction –HungrainAlgorithm – problems - Travelling salesman problem.

UNIT III: Critical Path Method (CPM): Introduction – Network and Basic components – Rules of Network construction – Time calculations in network – Critical Path Method.

UNIT IV: Correlation and Regression: Properties – Rank correlation- Regression linesproperties – simple problems.

UNIT V:FiniteDifferences:ForwardDifferences, Backward Differences -Newton's Formula for Interpolation - Lagrange's Interpolation Formula – Simple Problems

Text Books

1. Operations Research, Kantiswarup, P.K. Gupta, Man Mohan Sultan Chand & Sons Educational Publishers New Delhi (2007).

Unit I: Chapter: 10(Sec 10.1 & 10.2, 10.8 - 10.10) Unit II: Chapter 11 (Sect 11.1 - 11.3 & 11.7) Unit III: Chapter 25 (Sec 25.1 - 25.7)

2. Fundamentals of Mathematics Statistics, S.C. Gupta and V.K. Kapoor, Sultan Chand, Eleventh Edition (2010).

Unit IV:Chapter 10 (Sec 10.4, 10.7)&Chapter 11 (Sec 11.2, 11.2.1-11.2.3)

3. Introductory Methods of Numerical Analysis, S.S. Sastry, Prentice Hall of India Pvt. Ltd., New Delhi, Third edition (2010)

Unit V: Chapter 3 (Sec 3.3, 3.3.1, 3.3.2, 3.6, 3.9, 3.9.1)

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
Ι	S1ASM1	Differential Calculus, Differential Equations and Algebra (Allied Paper For Statistics Major)	4	4	English

UNIT I: Successive differentiation – Leibnitz's theorem (Proof excluded) and its applications.

UNIT II:Ordinary Differential Equations: Particular integral of second order Differential Equations with constant coefficients.

UNIT III: Binomial and Exponential Series: Summation and Approximation of the Series.

UNIT IV:Matrices: Symmetric, skew – Symmetric matrices-Hermitian and skew – Hermitian matrices – Unitary Matrices - Orthogonal matrices – Problems.

UNIT V:Matrices:Eigen values and Eigen vectors – Cayley –Hamilton theorem (Proof excluded) - Verification of Cayley- Hamilton theorem.

Text Books

1. Calculus (Volume I), S. Narayanan and T. K. ManickavachagomPillay, S. Viswanathan PVT., LTD (2009).

UNIT I: Chapter 3 (Full)

2. Calculus (Volume III), S. Narayanan and T. K. ManickavachagomPillay, S. Viswanathan PVT. LTD, (2004).

UNIT II: Chapter 2 (Sec 1 - 4)

3. Algebra (Volume I), T. K. ManickavachagomPillay, T. Natarajan and K.S. Ganapathy, S. Viswanathan PVT. LTD, (2004).

UNITIII:Chapter 3 (Sec 10&14) & Chapter 4 (Sec 2& 3) 4. Algebra (Volume II), T. K. ManickavachagomPillay, T. Natarajan and K.S. Ganapathy, S. Viswanathan PVT. LTD.

UNIT IV: Chapter 2 (Sec 6.1 – 6.3, 9.1) UNIT V: Chapter 2 (Sec 16, 16.3)

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
II	S2ASM2	Vector Calculus, Laplace Transforms and Fourier Series (Allied Paper For Statistics Major)	4	4	English

UNIT 1:Vector differentiation: Velocity and acceleration- Vector and scalar fields –Gradient of a vector- Directional derivative – divergence and curl of a vector – SolenoidalandIrrotational vectors.

UNIT II:Gauss Divergence Theorem – Stoke's Theorem- Simple problems - Verification of the above theorems (Proof excluded).

UNIT III:Laplace Transforms: Properties – Simple problems - Inverse Laplace Transforms-Problems –Solution of Ordinary Differential Equations using Laplace Transforms.

UNIT IV:Fourier series- Definition - Fourier Series expansion of periodic functions with Period 2π - Use of Odd and Even functions in Fourier Series.

UNIT V:Half range Fourier Cosine Series – definition and problems – Half range Fourier Sine series – Definition and problems.

Text Books

Vector Algebra and Analysis, S. Narayanan and T. K. ManickavachagomPillay,
 S. Viswanathan PVT. LTD.
 UNIT I: Chapter 4 (Sec 1, 2, 6 – 10)
 UNIT II: Chapter 6 (Sec 6, 9)
 Calculus (Volume III), S. Narayanan and T. K. ManickavachagomPillay, S. Viswanathan PVT. LTD, (2004).

UNIT III: Chapter 5 (Sec1,2,4 - 9) UNIT IV:Chapter 6 (Sec 1 - 3) UNIT V:Chapter 6 (Sec 4, 5)

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Part A: $10 \times 2 = 20$ (Two questions from each unit)

Part B: $5 \times 5 = 25$ (Either/Or type – One question from each unit)

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
I & II	S2ASM3	Integral Calculus, Analytical Geometry 3D (Allied Paper For Statistics Major)	3	4	English

UNIT I:Definite integrals: Properties – problems - Integration by parts – problems.

UNIT II:Multiple integrals: Double integrals – Simple problems (Change the order of integration excluded) – Triple integrals - Simple problems.

UNIT III:Plane: standard equation of the plane – intercept form – Normal form – Plane passing through the given points - angle between the planes – Plane through line of intersection of two planes.

UNIT IV: Straight line: Equation of a straight line in symmetrical form – Equation of a straight line passing through two given points - Coplanar lines – Equation of the Coplanar lines – Shortest distance between two skew lines – Equation of shortest distance.

UNIT V: Sphere: Standard equation – length of the tangent from any point – Plane section of a sphere - Sphere passing through a given circle – intersection of two spheres –Equation of the tangent plane to the sphere.

Text Book:

1. Calculus (Volume II), S. Narayanan and T. K. ManickavachagomPillay, S. Viswanathan PVT.LTD, (2006).

UNIT I: Chapter 2 (Sec 11& 12) UNIT II: Chapter 5 (Sec 1, 2.1, 2.2, 4)

2. Analytical geometry (Three Dimensions), T. K. ManickavachagomPillay and T. Natarajan, S. ViswanathanPVT. LTD, (2006).

UNIT III: Chapter 2 (Sec 1 - 9) UNITIV:Chapter 3 (Sec 1 - 4, 7& 8) UNIT V:Chapter 4 (Sec 1 - 8)

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Semester	Subject Code	Title of the Paper	Hours / Week	No. of Credits	Medium of Instruction
Ι	S1AM1	Differential Calculus and Algebra (Allied Paper For Physics and Chemistry Major)	4	4	Tamil and English

UNITI: Successive differentiation – Leibnitz's theorem (Proof excluded) and its applications.

UNIT II: Curvature – Radius of Curvature in Cartesian and Polar Co-ordinates – Centre of Curvature – Evolute.

UNIT III: Binomial and Exponential Series: Summation and Approximation of the series.

UNIT IV:Matrices: Symmetric, Skew – Symmetric matrices-Hermitian and Skew – Hermitian matrices – Unitary Matrices - Orthogonal matrices – Problems.

UNIT V:Matrices:Eigen values and Eigen vectors – Cayley –Hamilton theorem (Proof excluded) - Verification of Cayley- Hamilton theorem.

Text Books

1. Calculus (Volume I), S. Narayanan and T. K. ManickavachagomPillay, S. Viswanathan PVT., LTD (2009).

UNIT I: Chapter 3 (Full) UNITII:Chapter 10 (Sec 2.1 – 2.6)

3. Algebra (Volume I), T. K. ManickavachagomPillay, T. Natarajan and K.S. Ganapathy, S. Viswanathan PVT. LTD, (2004).

UNITIII: Chapter 3 (Sec 10,14) & Chapter 4 (Sec 2, 3)

4. Algebra (Volume II), T. K. ManickavachagomPillay, T. Natarajan and K.S. Ganapathy, S. Viswanathan PVT. LTD.

UNIT IV: Chapter 2 (Sec 6.1 – 6.3, 9.1) UNIT V: Chapter 2 (Sec 16, 16.3)

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Part A: $10 \times 2 = 20$ (Two questions from each unit)

Part B: $5 \times 5 = 25$ (Either/Or type – One question from each unit)

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
Π	S2AM2	Vector Calculus and Analytical Geometry 3D (Allied Paper For Physics and Chemistry Major)	4	4	Tamil and English

UNIT I:Vector differentiation: Velocity and acceleration- Vector and scalar fields –Gradient of a vector- Directional derivative – divergence and curl of a vector – SolenoidalandIrrotational vectors.

UNIT II:Gauss Divergence Theorem – Stoke's Theorem - Simple problems - Verification of the above theorems (Proof excluded).

UNIT III:Plane: Standard equation of the plane – Intercept form – Normal form – Plane passing through the given points - Angle between the planes – Plane through the line of intersection of two planes.

UNIT IV: Straight line: Equation of a straight line in symmetrical form – Equation of a straight line passing through two given points - Coplanar lines – Equation of the Coplanar lines – Shortest distance between two skew lines – Equation of shortest distance.

UNIT V: Sphere: Standard equation – Length of the tangent from any point – Plane section of a sphere - Sphere passing through a given circle – Intersection of two spheres –Equation of the tangent plane to the sphere.

Text Books

Vector Algebra and Analysis, S. Narayanan and T. K. ManickavachagomPillay,
 S. Viswanathan PVT. LTD.
 UNIT I: Chapter 4 (Sec 1, 2, 6 – 10)
 UNIT II: Chapter 6 (Sec 6& 9)

2. Analytical geometry (Three Dimensions), T. K. ManickavachagomPillay and T. Natarajan, S. ViswanathanPVT. LTD, (2006).

UNIT III: Chapter 2 (Sec 1 - 9) UNITIV:Chapter 3 (Sec 1 - 4, 7& 8) UNIT V:Chapter 4 (Sec 1 - 8)

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Part A: $10 \times 2 = 20$ (Two questions from each unit)

Part B: $5 \times 5 = 25$ (Either/Or type – One question from each unit)

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
I &II	S2AM3	Integral Calculus, Differential Equations, Laplace Transforms and Fourier Series (Allied Paper For Physics and Chemistry Major)	3	4	Tamil and English

UNIT I:Definite integrals: Properties – problems - Integration by parts – problems. Multiple integrals: Double integrals – Simple problems (Change the order of integration excluded) – Triple integrals - Simple problems.

UNIT II:Ordinary Differential Equations: Particular integral of second order Differential Equations with constant coefficients.

UNIT III:Laplace Transforms: Properties – Simple problems - Inverse Laplace Transforms-Problems –Solution of Ordinary Differential Equations using Laplace Transforms.

UNIT IV:Fourier series- Definition - Fourier Series expansion of periodic functions with Period 2π - Use of Odd and Even functions in Fourier Series.

UNIT V:Halfrange Fourier Cosine Series – definition and problems – Half range Fourier Sine series – Definition and problems.

Text Books

1. Calculus (Volume II), S. Narayanan and T. K. ManickavachagomPillay, S. Viswanathan PVT.LTD, (2006).

UNIT I: Chapter 2 (Sec 11, 12)& Chapter 5 (Sec 1, 2.1, 2.2, 4)

2. Calculus (Volume III), S. Narayanan and T. K. ManickavachagomPillay, S. Viswanathan PVT. LTD, (2004).

UNIT II: Chapter 2 (Sec 1 - 4) UNITIII:Chapter 5 (Sec 1, 2, 4 - 9) UNITIV:Chapter 6 (Sec 1 - 3) UNIT V:Chapter 6 (Sec 4, 5)

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
Ι		Numerical Methods and			
	S1ACSM1	Operations Research	4	1	English
	STACSWIT	(Allied Paper for Computer	4	4	English
		Science Major)			

UNIT I:Solutions of algebraic and transcendental equation: Bisection Method - Iteration Method of False position - Newton -Raphson Method.

UNITII:Numerical differentiation: Computing first and second derivatives - Numerical integration: Trapezoidal rule - Simpson's 1/3 and 3/8 rules.

UNIT III: Solution of linear systems: Gaussian elimination Method - Iterative methods: Gauss Seidal Methods. Numerical solutions of Ordinary differential equations:Taylor's series method– Euler's method.

UNIT IV: Mathematical Formulation of linear programming problems - Graphical method –simplex method - Assignment Problems: Introduction – Hungarian Algorithm – problems - Travelling salesman problem.

UNIT V: Transportation Problems: Introduction –Finding initial Basic feasible solution (North West Corner Rule, Least Cost Method, Vogel's Approximation Method) – Optimal solution (Modified Distribution Method) – Degeneracy in Transportation Problems.

Text Book:

1. Introductory Methods of Numerical Analysis, S.S. Sastry, Prentice Hall of India Pvt. Ltd, New Delhi, Third Edition (2003).

UNIT I:Chapter 2 (Sec 2.2 - 2.5) UNITII:Chapter 5 (Sec 5.2, 5.4(5.4.1 - 5.4.3)) UNIT III: Chapter 6 (Sec 6.3.2, 6.4) & Chapter VII (Sec 7.2-7.4)

2. Operations Research, Kantiswarup, P.K. Gupta, Man Mohan Sultan Chand &SonsEducational Publishers New Delhi (2007).

UNIT IV:Chapter2 (Sec2.1- 2.4) &Chapter3(Sec 3.1&3.2)Chapter 11 (Sec 11.1, 11.2, 11.3, 11.7)

UNIT V:Chapter: 10(Sec 10.1, 10.2, 10.8, 10.9, 10.10, 10.12, 10.13)

Question Paper Pattern

Maximum Marks: 75

Examination Duration: 3 Hours

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
П	S2ACSM2	Integral Calculus, Vector Calculus, Laplace Transforms and Fourier Series (Allied Paper For Computer Science Major)	4	4	English

UNIT 1:Definite integrals: Properties – problems - Integration by parts – Problems. Multiple integrals: Double integrals – Simple problems (Change the order of integration excluded) – Triple integrals - Simple problems.

UNIT I1:Vector differentiation: Velocity and acceleration- Vector and scalar fields – Gradient of a vector- Directional derivative – Divergence and curl of a vector – SolenoidalandIrrotational vectors.

UNIT III:Gauss Divergence Theorem – Stoke's Theorem- Simple problems - Verification of the above theorems (Proof excluded).

UNIT IV:Laplace Transforms: Properties – Simple problems - Inverse Laplace Transforms-Problems –Solution of Ordinary Differential Equations using Laplace Transforms.

UNIT V:Fourier series- Definition - Fourier series expansion of periodic functions with Period 2π .

Text Books

1. Calculus (Volume II), S. Narayanan and T. K. ManickavachagomPillay, S. Viswanathan PVT.LTD, (2006).

UNIT I: Chapter 2 (Sec 11, 12)& Chapter 5 (Sec 1, 2.1, 2.2, 4)

2. Vector Algebra and Analysis, S. Narayanan and T. K. ManickavachagomPillay,

S. Viswanathan PVT. LTD.

UNIT II: Chapter 4 (Sec 1, 2, 6 – 10)

UNIT III: Chapter 6 (Sec 6& 9)

3. Calculus (Volume III), S. Narayanan and T. K. ManickavachagomPillay, S. Viswanathan PVT. LTD, (2004).

UNIT IV: Chapter 5 (Sec1,2,4 - 9) UNIT V:Chapter 6 (Sec 1 - 3)

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Semester	Subject Code	Title of the Paper	Hours/ Week	No. of Credits	Medium of Instruction
I &II	S2ACSM3	Probability and Statistics (Allied Paper For Computer Science Major)	3	4	English

UNIT 1:Probability - Definition- Sample space - Independent Events - Addition theorem - Conditional Probability - Multiplication theorem - Baye's theorem - Simple problems.

UNIT II:Random Variables – Distribution functions – Probability Mass Function – Probability density function – Two dimensional random variables – Simple problems.

UNIT III:Mathematical Expectation – Simple problems – Moment generating functions – Simple problems.

UNIT IV:Binomial Distribution – Moments – Moment generating function – Poisson Distribution – Moments – Moment generating function – Normal Distribution - Moment generating function.

UNIT V:Correlating and Regression- Properties – Rank correlation – Regression Lines – Properties – Simple problems.

Text Book

Fundamentals of Mathematics Statistics, S.C. Gupta and V.K. Kapoor, Sultan Chand, Eleventh Edition (2010).

UNIT I: Chapter 3 (Sec 3.8 – 3.13)

UNIT II: Chapter 5 (Sec 5.1 - 5.5)

UNIT III: Chapter 6 (Sec 6.1 - 6.6) & Chapter 7 (Sec 7.1)

UNIT IV: Chapter 8 (Sec 8.4, 8.4.1, 8.4.6, 8.5, 8.5.2, 8.5.5) & Chapter 9 (Sec 9.2, 9.2.5)

UNIT V:Chapter 10 (Sec 10.4& 10.7) & Chapter 11 (Sec 11.2, 11.2.1 - 11.2.3)

Question Paper Pattern

Maximum Marks: 75

Examination Duration : 3 Hours

Part A: $10 \times 2 = 20$ (Two questions from each unit)

Part B: $5 \times 5 = 25$ (Either/Or type – One question from each unit)